BEST论坛讲座报告第二期:分散式发电以减少空气污染、水污染以及温室气体排放 (Air Pollutant, Water, and Greenhouse Gas Emission Reductions Using Decentralized Power Generation)

发布人:环境学院 发布时间:2022-03-26 浏览次数:629

        全球环境科学高峰论坛系列讲座(GloBal Environmental Science SummiT seminar series,  BEST),由哈尔滨工业大学环境学院组织、多家单位联合协办,意在打造全球范围内的精品高端环境论坛,为研究学者、企业家、环境从业者以及学生等提供广泛的国际交流机会。BEST论坛涉及主题包括:气候变化与可持续发展环境与生态健康、减污降碳协同增效、水资源及水处理技术、土壤修复、环境基准与环境安全、环境微生物学、人工智能与大数据等

    BEST将以ZOOMVooV/腾讯网络研讨会结合B站直播与环境人微信视频号直播的方式每月进行一次讲座。

BEST的邀请,BEST第二讲将由来自佐治亚理工学院的John C. Crittenden教授进行

        2022328 20:00—22:00(北京时间)

【直播平台】:ZOOM webinar ID: 862 9227 3308 (https://us02web.zoom.us/j/86292273308)

                            B站直播(BEST论坛http://live.bilibili.com/24457533

                            环境人微信视频号直播

    

     B站直播              环境人视频号

(注:ZOOM webinar最大容量500人,请无法进入的观众前往环境人微信视频号或B站(BEST论坛)观看直播;登录相应账号,即可在讨论区、弹幕区进行提问参与讨论)

 

 

【报告题目】分散式发电以减少空气污染、水污染以及温室气体排放

Air Pollutant, Water, and Greenhouse Gas Emission Reductions Using Decentralized Power Generation

【报告摘要

Gigaton problems are the most severe problems that challenge humanity, and they are measured at the “gigaton (billion tons - Gt)” scale. For example, the annual world energy consumption is around 12 Gt of oil equivalent (Gtoe), 80% of that from nonrenewable fossil fuels. The combustion of these fossil fuels emits approximately 29 Gt of CO2. Additionally, the world uses more than 79 Gt of materials annually, of which only about 29% are renewable. Clearly, this is not sustainable in the long run. These gigaton problems call for solutions which can meet the gigaton scale, or gigaton solutions.

The current practice of designing, building, and operating infrastructure is rooted in the Eisenhower era and is a barrier to the future. Its failure to recognize the interdependencies between infrastructure components results in a sub-optimal system that is viable only because of the availability of cheap fossil fuels and non-renewable resources, and the externalization of costs, risks, and harms. For infrastructure to support societies moving forward, a reimagining and restructuring needs to occur that:

uncovers the interconnections and interdependencies among civil infrastructure systems and their interactions with social, financial, and natural systems;

works with industry, government, and non-governmental organizations to create an interoperable systems platform that is necessary to design, simulate, test, monitor, build, control, and protect massive, open, and complex infrastructure systems;

develops, tests, and implements the new laws, rules, standards, and best practices for designing, building, financing, operating, and decommissioning sustainable and resilient infrastructure across its total life cycle;

develops the pedagogy that teaches, trains, and empowers the workforce, organizations, and agencies that will transform infrastructure from isolated, simple, and vulnerable components into a connected, complex, and resilient system; and

recruits and retains a new generation work force that is as diverse as the communities in which they serve.

This is not a call for incremental improvement but a proclamation for bold infrastructure reform that can best be characterized as the creation of a new Science of Gigatechnology. Gigatechnologies are the largest engineered systems that humans create. They include regional electric power grids; networks of interstates and roads; municipal water systems; connected communications, sensors, and computing devices; and clusters of buildings that aggregate to form blocks, neighborhoods, and cities. The science of Gigatechnology is more than simply designing, building, and operating these and other big systems, and it is more than just a digital overlay on top of physical systems conceived in a pre-cyber age. Gigatechnology is about the properties that emerge from big systems interacting with each other, and with social, economic, technological, and natural systems. Smog, climate change, flooding, inequality, and community identity are just a few examples of emergent properties. They cannot be seen or anticipated from the examination of just one element of the system, and those responsible for the overall function and fitness of the parts are rarely challenged to address infrastructures as a system of systems. It is paramount to understand that the new design is to create desirable emerging properties such as improving the quality or life, GDP etc. Unlocking the mysteries of Gigatechnology is essential to the health and well-being of people, the planet, and the worldwide economy.

A new transformative science for gigatechnologies has been established called “Infrastructure Ecology,” with new engineering standards, protocols, tools, and workers to apply its laws and rules for building cities that are sustainable, resilient, equitable, and efficient. Energy infrastructure is an example of one such gigatechnology system, in which diverse adaptive entities (i.e., citizens, firms, developers, and governments) interact to manipulate mass and energy at the giga-scale. The decisions and interactions between these entities drive the dynamic and evolving interdependence between the urban physical infrastructure and the socioeconomic environment through which it operates. This interdependence leads to the emergence of, among other things, specific land use arrangements, quality of life issues, and carbon footprints.  We have been focusing on the development of common metrics, algorithms, principles, standards, frameworks, architectures, units, methods, and vocabulary that are needed to start creating the shared mental models and language of the new science of “Infrastructure Ecology” (its Epistemology). To date, Infrastructure Ecology involves three components to understand, anticipate, and control the emergent properties that result from systems interactions, i.e.: (1) the creation of the novel infrastructure technology genome, (2) infrastructure integration, and (3) management of complexity for improving adoption of more sustainable infrastructure.

The first component is the discovery of the novel infrastructure genome through advanced computing and innovative designs that can lead to a more sustainable nexus among water, energy, transportation, buildings, land use, the socioeconomic environment, etc.  For example, our contribution to the infrastructure technology genome includes the evaluation of the sustainability performance of decentralized power generation (e.g., combined cooling heat and power - CCHP and solar PV) to improve energy efficiency and reduce water demand and NOx emissions. Obviously, there are hundreds of other technologies that belong to the infrastructure technology genome and we will discuss some of these technologies.  The second component is the development of gigatech platform (a.k.a. known as a digital twin) that allows one to examine the cost, sustainability, resilience, and performance of integrated infrastructures. This digital twin can examine billions of options using what is known as multiple disciplinary design optimization and find the optimum combinations of infrastructure systems. In the past, we have designed infrastructure in a siloed fashion and this has resulted in suboptimum solutions.  The gigatech digital twin integrates technologies to create more sustainable and resilient infrastructure.  Our research includes deciding on interoperability standards that can accommodate the broad array of models now and in the future; building the actual platform that will integrate the models and systems; and creating simulation and data analysis algorithms, visualization and other communication utilities that allow interested parties deep insight into the connection of gigatechnologies and their resultant impacts throughout the system.  The third component is the management of inherent complexity for improving the adoption of more sustainable infrastructure. To manage this complexity, we develop a better understanding of people’s preferences and demands for more sustainable infrastructure designs and the subsequent externalized costs associated with the adoption of distributed energy systems.

千兆吨级是人类面临的最严峻的一类问题,它们通常以“千兆吨(十亿吨 - Gt)”为尺度。例如,每年世界能源的消耗量大约相当于 120亿吨石油,这其中的80% 来自不可再生化石燃料。这些化石燃料的燃烧可排放出约为 290亿吨的CO2。此外,全世界每年需要使用超过790亿吨的材料,而这之中只有约29% 是可再生的。长远来看,千兆吨级的消耗模式是不可持续的,人们急需能够满足千兆吨级规模的解决方案和方法。

当下的许多设计、建造和运营基础设施的做法来源于Eisenhower时代,由于这种做法并未认识到基础设施组成部分之间的相互依赖关系,从而形成了一个只关注廉价化石燃料和不可再生资源的可用性以及外部成本和风险的次优系统,这种系统并不利于未来的发展。因此,对支持社会向前发展的基础设施建设,需要进行重构:

1) 揭示民用基础设施系统与社会、金融和自然系统之间的相互联系和相互依存关系;

2) 与行业、政府和非政府组织合作,创建一个集设计、模拟、测试、监控、构建、控制,以及大规模保护、开放和复杂基础设施的可互操作的平台系统;

3) 对设计、建设、融资、运营、停用和韧性基建设施的全生命周期制定、测试并实施新的法律法规、标准及实践;

4) 开展教学与培训并对员工、组织和机构授权将基础设施从孤立、简单和易损的系统转变为一个多助、复杂和有弹性的系统。

5) 招募新一代劳动力。

这不是对渐进式改进的呼吁,而是一项大胆的基础设施改革宣言,是创造一种新的千兆技术科学。千兆技术是人类创造的最大的系统工程,它们包括区域电网;州际公路网络;市政供水系统;互联通信、传感器和计算设备,以及围绕其聚集形成的街区、社区和城市的建筑群。千兆技术科学不仅仅是简单地设计、构建和操作大型系统,也不仅仅是在前网络时代构想的物理系统之上的数字叠加,也是关于大系统间相互作用的特性,以及与社会、经济、技术和自然系统相互作用特性的一项科学技术。烟雾、气候变化、洪水、不平等和社区认同只是新兴特性的几个例子,仅通过对系统的某一个元素进行检查是无法看到或预料到它们的,那些负责部件整体功能和适用性的人也很少会将基础设施作为一个系统来解决问题。最重要的是,新设计是为了创造理想的新兴属性,例如提高质量或生活、GDP 等。解开千兆技术的奥秘对于人类、地球和全球经济的健康和福祉至关重要。

“基础设施生态学”是一类已经建立了的千兆技术科学,它以新的工程标准、协议、工具,劳动力,法律及规则来建设可持续、有韧性、公平和高效的城市群体。能源基础设施就是千兆技术系统的一个例子,在这个系统中,不同的适应性实体(如公民、公司、开发商和政府)的相互作用进行着千兆级的操作。这些实体之间的决策与互动推动了城市基础设施与社会经济环境之间动态的、不断发展的相互依存关系,但这种相互依赖导致了土地的安排使用、生活质量问题和碳足迹等问题的出现。我们一直专注于开发创建“基础设施生态学”(及其认识论)的通用指标、算法、原则、标准、框架、架构、单元、方法和词汇。到目前,基础设施生态学涉及三个组成部分,用于理解、预测和控制由系统交互产生的新兴属性,即:(1)创建新的基础设施技术基因组,(2)基础设施集成,以及(3)推动采用更多的可持续的基建设施管理。

第一个组成部分是通过先进的计算和创新设计发现新的基础设施基因组,从而在水、能源、交通、建筑、土地利用、社会经济环境等之间建立更可持续的联系。例如,我们对基础设施技术基因组的贡献包括评估分散式发电(例如冷热电联产-CCHP 和太阳能光伏发电)的可持续性性能,以提高能源效率并减少水需求和氮氧化物排放。显然,基础设施技术基因组中还有数百种其他技术,我们也将讨论其中的一些技术。第二个组成部分是gigatech 平台(也称为数字双胞胎)的开发,可以方便人们检查集成基础设施的成本、可持续性、韧性及性能等情况。在过去,我们以孤立的方式设计基础设施,这导致了次优方案的出现,而现在通过gigatech平台可通过多学科设计优化来检查数十亿个选项,并找到基础设施系统的最佳组合。gigatech 数字孪生集成技术可创建更具可持续性和韧性的基础设施。我们的研究包括确定可广泛应用于现在与未来的模型的互操作性标准;构建综合模型和系统的实际平台;并创建模拟和数据分析算法、可视化和其他通信程序,让对千兆技术感兴趣的人们能够深入了解千兆技术的互联及其对整个系统的影响。第三个组成部分促进采用更多可持续的基础设施管理方面固有的复杂性。为了解决这种复杂性,我们更好地了解人们对更可持续的基础设施设计的偏好和需求,以及后续与采用分布式能源系统相关的外部成本。

【主讲人简介】

 

Professor John C. Crittenden is the director of the Brook Byers Institute for Sustainable Systems and a professor in the School of Civil and Environmental Engineering at the Georgia Institute of Technology. Prof. Crittenden holds the Hightower Chair and is a visiting professor and PhD supervisor of Harbin Institute of Technology. He was elected to the U.S. National Academy of Engineering in 2002, the Chinese Academy of Engineering in 2013 and the European Academy of Sciences in 2019. He is the 2015 Clarke Prize laureate, which is generally recognized as the American Nobel prize for water and received Chinese Government Friendship Award in 2019, and the 2020 Simon W. Freese Environmental Engineering Award. He is the primary author of the bestselling textbook, Water Treatment: Principles and Design (2012, Wiley). He authored more than 400 articles that were published in refereed journals, more than 100 book chapters, reports and symposia, and has over 30,000 citations and an H index of 79. The articles present his research on sustainable urban infrastructure, membrane technologies, adsorption, and advanced oxidation including electrochemical advanced oxidation.

John C. Crittenden 教授是布鲁克拜尔斯可持续系统研究所所长、佐治亚理工学院土木与环境工程学院教授、Hightower主席、哈尔滨工业大学兼职教授及博士生导师。Crittenden教授2002年当选为美国工程院院士,2013年当选为中国工程院外籍院士,2019年当选为欧洲科学院院士。于2015年获得克拉克奖(公认的美国诺贝尔水奖),2019年获得中国政府友谊奖,2020年获得Simon W. Freese环境工程奖。Crittenden教授作为主要作者撰写畅销书《Water Treatment: Principles and Design》(2012年,Wiley出版)。发表研究论文四百多篇,发表专著章节、报告、讲座等100余篇(次),文章被引频次3万余次,H指数达79John C. Crittenden教授在可持续城市基础设施建设、膜技术、吸附和高级氧化包括电化学高级氧化)等方面都颇有研究。

 

组织单位:哈尔滨工业大学环境学院

协办单位:清华大学环境学院

                    北京大学环境科学与工程学院

                    南开大学环境科学与工程学院

                    同济大学环境科学与工程学院

                    南京大学环境学院

                    浙江大学环境与资源学院

                    天津大学环境与生态研究院

                    中国科学技术大学环境科学与工程系

                     广东省科学院生态环境与土壤研究所

                     哈尔滨工业大学城市水资源与水环境国家重点实验室

                     中国环境科学研究院环境基准与风险评估国家重点实验室

                     哈尔滨工业大学污染物处理及能源化国际联合研究中心

                     哈尔滨工业大学污泥安全处置与资源化技术国家工程研究中心

                     哈尔滨工业大学生物能源开发利用国家地方联合工程研究中心

                     环境人Environmentor

                     国际水协IWA

                     北美华人环境工程与科学教授学会CAPEES

                     国际地球化学协会IAGC